On considère le nombre complexe \(z=5-2\text{i}\).
1. Dans un repère orthonormé, représenter le point \(\text{A}\) d'affixe \(z\).
2. Représenter le point \(\text{B}\) d'affixe \(\overline{z}\).
3. Représenter le point \(\text{C}\) d'affixe \(-z\).
4. On considère le quatrième sommet \(\text{D}\) du rectangle \(\text{ABCD}\).
Exprimer l'affixe de \(\text{D}\) en fonction de \(z\).
Source : https://lesmanuelslibres.region-academique-idf.frTélécharger le manuel : https://forge.apps.education.fr/drane-ile-de-france/les-manuels-libres/mathematiques-premiere-techno-sti2d-std2a ou directement le fichier ZIPSous réserve des droits de propriété intellectuelle de tiers, les contenus de ce site sont proposés dans le cadre du droit Français sous licence CC BY-NC-SA 4.0 